Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants.

نویسندگان

  • Yoshiteru Mizukoshi
  • Tatsuya Shuto
  • Naoya Masahashi
  • Shuji Tanabe
چکیده

Magnetic iron oxide nanoparticles were successfully prepared by a novel reverse precipitation method with the irradiation of ultrasound. TEM, XRD and SQUID analyses showed that the formed particles were magnetite (Fe(3)O(4)) with about 10nm in their diameter. The magnetite nanoparticles exhibited superparamagnetism above 200K, and the saturation magnetization was 32.8 emu/g at 300 K. The sizes and size distributions could be controlled by the feeding conditions of FeSO(4).7H(2)O aqueous solution, and slower feeding rate and lower concentration lead to smaller and more uniform magnetite nanoparticles. The mechanisms of sonochemical oxidation were also discussed. The analyses of sonochemically produced oxidants in the presence of various gases suggested that besides sonochemically formed hydrogen peroxide, nitrite and nitrate ions contributed to Fe(II) ion oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of Superparamagnetic of Co0.5Zn0.5Fe2O4 at Room Temperature by Co-precipitation Method and Investigation of Its Physical Properties

Magnetic nanoparticles of cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) have been synthesized in a homogeneous aqueous solution at room temperature by co-precipitation method without any template and subsequent heat treatment. Synthesis of material is confirmed using XRD from the report of single phase polycrystalline ferrite material and also determined lattice constant. Atomic absorption spectrophoto...

متن کامل

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications

Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics sonochemistry

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2009